Hydropathic interaction analyses of small organic activators binding to antithrombin.
نویسندگان
چکیده
Recently we designed the first small organic ligands, sulfated flavanoids and flavonoids, that act as activators of antithrombin for accelerated inhibition of factor Xa, a key proteinase of the coagulation cascade [Gunnarsson and Desai, Bioorg. Med. Chem. Lett. (2003) 13:579]. To better understand the binding properties of these activators at a molecular level, we have utilized computerized hydropathic interaction (HINT) analyses of the sulfated molecules interacting in two plausible electropositive regions, the pentasaccharide- and extended heparin-binding sites, of antithrombin in its native and activated forms. HINT analyses indicate favorable multi-point interactions of the activators in both binding sites of the two forms of antithrombin. Yet, HINT predicts better interaction of most activators, except for (-)-catechin sulfate, with the activated form of antithrombin than with the native form supporting the observation in solution that these molecules function as activators of the inhibitor. Further, whereas (+)-catechin sulfate recognized the activated form of antithrombin better in both the pentasaccharide- and extended heparin- binding sites, the native form was better recognized by (-)-catechin sulfate, thus explaining its weaker binding and activation potential in solution. A reasonable linear correlation between the overall HINT score and the solution free energy of binding of the sulfated activators was evident. This investigation indicates that HINT is a useful tool in understanding interactions of antithrombin with small sulfated organic ligands at a molecular level, has some good predictive properties, and is likely to be useful for rational design purposes.
منابع مشابه
Designing small, nonsugar activators of antithrombin using hydropathic interaction analyses.
Conformational activation of antithrombin is a critical mechanism for the inhibition of factor Xa, a proteinase of the blood coagulation cascade, and is typically achieved with heparin, a polyanionic polysaccharide clinically used for anticoagulation. Although numerous efforts have been directed toward the design of better activators, a fundamental tenet of these studies has been the assumed re...
متن کاملInteraction of designed sulfated flavanoids with antithrombin: lessons on the design of organic activators.
Recently, we designed (-)-epicatechin sulfate (ECS), the first small nonsaccharide molecule, as an activator of antithrombin for the accelerated inhibition of factor Xa, a key proteinase of the coagulation cascade (Gunnarsson, G. T.; Desai, U. R. J. Med. Chem. 2002, 45, 1233-1243). Although sulfated flavanoid ECS was found to bind antithrombin with an affinity ( approximately 10.7 microM) compa...
متن کاملExploring new non-sugar sulfated molecules as activators of antithrombin.
New non-sugar, small, sulfated molecules, based on our de novo rationally designed activator (-)-epicatechin sulfate (ECS), were investigated to bind and activate antithrombin, an inhibitor of plasma coagulation enzyme factor Xa. For the activators studied, the equilibrium dissociation constant (K(D)) of the interaction with plasma antithrombin varies nearly 53-fold, with the highest affinity o...
متن کاملThe effect of physical organic properties on hydrophobic fields
Physical organic structural properties of small molecules and macromolecules such as bond count, branching and proximity between multiple polar fragments contribute significantly to measured hydrophobicity (log P). These structural properties are encoded in the Rekker and Leo methods of calculating log P as structural-dependent factors. Regardless of the size of the atom primitive set, methods ...
متن کاملAntithrombin activation by nonsulfated, non-polysaccharide organic polymer.
Accelerated antithrombin inhibition of procoagulant enzymes has been exclusively achieved with polysulfated polysaccharides. We reasoned that antithrombin activation should be possible with nonsulfated activators based only on carboxylic acid groups. As a proof of the principle, linear poly(acrylic acid)s were found to bind to antithrombin and accelerate inhibition of factor Xa and thrombin. Ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioorganic & medicinal chemistry
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2004